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*15. Prove that if X and Z are cobordant in Y, then for every compact
manifold C in Y with dimension complementary to X and Z, I,(X, C)
= I,(Z, C). [HINT: Let f be the restriction to W of the projection map
Y X I —Y, and use the Boundary Theorem.]

16. Prove that deg, (/) is well defined by direct application ofthe Boundary
Theorem. [HINT: If y,, y, € Y,alter f homotopically to get f A {y,, ¥1}.
Now let ¢c:I— Y be a curve with ¢(0) = y,, ¢(1) = y,, and define
F: XX I— Y X Ybyf X c. Examine 0F.]

17. Derive the Nonretractioﬁ Theorem of Section 2 from the Boundary
Theorem.

18. Suppose that Z is-a compact submanifold of Y with dim Z = 4 dim Y.
Prove that if Z is globally definable by independent functions, then
1,(Z,Z) = 0. [HINT: By Exercise 20, Section 3, N(Z; Y) =Z X R*.
Certainly I,(Z,Z) =0 in Z X R¥, since Z X {a} N Z is empty. Now
use the Tubular Neighborhood Theorem, Exercise 16, Section 3.]

19. Show that the central circle X in the open M&bius band has mod 2 in-
tersection number /,(X, X)) = 1. [HINT: Show thatwhenthe ends of the
strip in Figure 2-18 are glued together with a twist, X’ becomes a mani-
fold that is a deformation of X.]

Figure 2-18

Corollary to Exercises 19 and 20. The central circle in the M&bius band is
not definable by an independent function.

85 Winding Numbers and
the Jordan-Brouwer Separation Theorem

The Classical Jordan Curve Theorem says that every simple
closed curve in R? divides the plane into two pieces, the “inside” and “out-
side” of the curve. Lest the theorem appear too obvious, try your intuition on
the example shown in Figure 2-19.

This section is a self-guided expedition with gun and camera into the
wilds of such jungles, and in n dimensions, too! Begin with a compact, con-
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Figure 2-19

nected manifold x and a smooth map f: X — R” Suppose that dim X =
n — 1, so that, in particular, f might be the inclusion map of a hypersurface
into R*. (In general, a hypersurface in a manifold is a submanifold of codi-
mension one.) We wish to study how f wraps X around in R” so take any
point z of R” not lying in the image f(X). To see how f(x) winds around z,
we inquire how often the unit vector

(x) — z
) = =T

which indicates the direction from z to f(x), points in a given direction. From
Intersection Theory, we know that u: X — S$*! hits almost every direction
vector the same number of times mod 2, namely, deg, (u) times. So seize this
invariant and define the mod 2 winding number of faround ztobe W,(f, z) =
deg, (u). (See Figure 2-20.)

In a moment you will use this notion (i.e., mod 2 winding number) to
establish a generalized version of the Jordan curve theorem, but first some
exercises will develop a preliminary theorem. The proof introduces a beauti-

f(x)

Figure 2-20



§5 Winding Numbers and the Jordan-Brouwer Separation Theorem 87

fully simple technique that appears repeatedly in later sections. Hints are
provided at the end of the section, but it should be fun to fit the proof togeth-
er yourself.

Theorem. Suppose that X is the boundary of D, a compact manifold with
boundary, and let F: D — R” be a smooth map extending f; that is, dF = f.
Suppose that z is a regular value of F that does not belong to the image of f.
Then F~'(z) is a finite set, and W (f, z) = # F~'(z) mod 2. That is, f winds
X around z as often as F hits z, mod 2. (See Figure 2-21.)

Twist Collapse
—— —_—

Waf, ) =#F~ 1 (Z)ymod2=0
Figure 2-21
Here are some exercises to help you construct a proof:
1. Show that if F does not hit z, then W,(f, z) = 0.

2. Suppose that F~!(z) = {y;, ..., ), and around each point y; let B, be
a ball, (That is, B, is the image of a ball in R” via some local parametriza-
tion of D.) Demand that the balls be disjoint from one another and from
X = 0D. Letf;:dB; — R” be the restriction of F, and prove that

Wit 2) =Wy(f1,2)+ -+ + Wy, z) mod2.
(See Figure 2-22.)

Figure 2-22

3. Use the regularity of z to choose the balls B; so that W,(f;, z) = 1, and
thus prove the theorem.

Now assume that X actually is a compact, connected hypersurface in R”.
If X really does separate R” into an inside and an outside, then it should be
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the boundary of a compact n-dimensional manifold with boundary—namely,
its inside. In this case, the preceding theorem tells us that if z € R” is any point
noton X, then W,(X, z) must be 1 or 0, depending on whether z lies inside
or outside of X. [Here W,(JX, z) isused for the winding number of the in-
clusion map of X around z.] The next exercises help you reverse this rea-
soning to prove the Separation Theorem.

4. Letz € R* — X. Prove that if x is any point of X and U any neighbor-
hood of x in R”, then there exists a point of U that may be joined to z
by a curve not intersecting X (Figure 2-23).

Figure 2-23
5. Show that R” — X has, at most, two connected components.

6. Show that if z, and z, belong to the same connected component of
R” — X, then W,(X, z,) = W,(X, z,).

7. Given a point z € R* — X and a direction vector v € S, consider
the ray r emanating from z in the direction of v,

r={z+t5:t20}.

Check that theray r is transversal to X if and only if visa regular value
of the direction map u: X — S"~!. In particular, almost every ray from
z intersects X transversally.

8. Suppose that r is a ray emanating from z, that intersects X transversally
in a nonempty (necessarily finite) set. Suppose that z, is any other point
on r (but not on X), and let / be the number of times r intersects X be-
tween z, and z,. Verify that W,(X, z,) = W,(X, z,) + 1 mod 2. (See
Figure 2-24.)

9. Conclude that R* — X has precisely two components,

Dy ={z:W,(X,2)=0} and D, ={z:W,(X,z) =1}
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Figure 2-24
10. Show that if z is very large, then W,(X, z) = 0.
11. Combine these observations to prove

The Jordan-Brouwer Separation Theorem. The complement of the compact,
connected hypersurface X in R” consists of two connected open sets, the
“outside” D, and the “inside” D,. Moreover, D, is a compact manifold with
boundary 9D, = X.

Note that we have actually derived a simple procedure for determining
whether a given point z lies inside or outside of X.

12. Given z € R” — X, let r be any ray emanating from z that is trans-
versal to X. Show that z is inside X if and only if r intersects X in an odd
number of points (Figure 2-25).

Hints (listed by exercise number)
1. If u extends to D, then deg, (v) = 0.
2. Use 1, replacing D by

]
D' = D — (J Int (B,).
i=1

3. Iff, carries dB; diffeomorphically onto a small sphere centered at z,
then u,:dB; — S*~! is bijective. But f is a local diffecomorphism at
¥:» SO you can choose such B,.

4. Show that the points x € X for which the statement is true con-
stitute a nonempty, open, and closed set. (Closed: easy. Open: use
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Figure 2-25

coordinates making X look locally like a piece of R*-! in R”. Non-
empty: consider the straight line joining z to the closest point in X.)

Let B be a small ball such that B — X has two components, and fix
points z, and z, in opposite components. Every point of R* — X
may be joined to either z, or z, by a curve not intersecting X. (We
have not yet excluded the possibility that z, and z, may be so joined!)

If z, is a curve in R* — X, then the homotopy

X — z,

u(x) = W
t

is defined for all 7. Thus », and », have the same mod 2 degree.

Either compute directly or use Exercise 7, Chapter 1, Section 5.
Note thatif g:R* — {z} —> S"'isg(y) =y — z/|ly — z|, thenu: X
— S* ! is g composed with the inclusion map of X. So by the
exercise cited, u {1y {»} if and only if X 7 g~'{v}.

By Exercise 7, visa regular value for both u, and u,. But
#uz'(v) = #ui'(v) + 1.

Exercise 8 implies that both D, and D, are nonempty. Now apply
Exercises 5 and 6.

Since X is compact, when | z|is large the image u(X) on $"~! liesin
a small neighborhood of z/| z|.
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11. By Exercise 10, D, is compact, and D, = D, U X. Produce a local
parametrization of D, around a point x € X as follows: Let
w:B— R” mapaball B around 0'in R” diffeomorphically onto a
neighborhood of x in R”, carrying B N\ R*"! onto X N w(B). Use
Exercises 4 and 6 to prove either that w(B N H”) —« D, and
w(B N —H") < D, or the reverse. In either case, ¥ restricts to a
local paramterization of D, around x.

12. Combine Exercise 8 with Exercise 10.

86 The Borsuk-Ulam Theorem

We shall use our winding number apparatus to prove another
famous theorem from topology, the Borsuk-Ulam theorem. One form of it is

Borsuk-Ulam Theorem. Let f:S* — R**! be a smooth map whose image
does not contain the origin, and suppose that f satisfies the symmetry condi-
tion

f(—x) = —f(x) for all x € S%,

Informally, any map that is symmetric around the origin must wind
around it an odd number of times.

Proof. Proceed by induction on k. For k = 1, see Exercise 2.

Now assume the theorem true for k — 1, and let f: S¥ — R**1 — {0} be
symmetric. Consider S*~! to be the equator of S*, embedded by (x,, ..., x;)
— (X1, ..., X, 0). The idea of the proof is rather like Exercise 12 in the
previous section. We will compute W ,( £, 0) by counting how often fintersects
a line / in R**!, By choosing / disjoint from the image of the equator, we can
use the inductive hypothesis to show that the equator winds around / an odd
number of times. Finally, it is easy to calculate the intersection of f with /
once we know the behavior of f on the equator.

Denote the restriction of f'to the equator $*~! by g. In choosing a suitable
line /, use Sard to select a unit vector a that is a regular value for both maps

& .sk-1 5 8§k and —f 1 Sk — S§*.

|g] | /]
From symmetry, it is clear that —a is also a regular value for both maps. By
dimensional comparison, regularity for g/| g | simply means that g/ g| never
hits @ or —a; consequently, g never intersects the line / = R-aq. We let you

check that regularity for fj| f | is equivalent to the condition f /f /. (See Exer-
cise 7, Chapter 1, Section 5.)



