- *15. Prove that if X and Z are cobordant in Y, then for every compact manifold C in Y with dimension complementary to X and Z, $I_2(X, C) = I_2(Z, C)$. [HINT: Let f be the restriction to W of the projection map $Y \times I \longrightarrow Y$, and use the Boundary Theorem.] - 16. Prove that $\deg_2(f)$ is well defined by direct application of the Boundary Theorem. [Hint: If $y_0, y_1 \in Y$, alter f homotopically to get $f \cap \{y_0, y_1\}$. Now let $c: I \to Y$ be a curve with $c(0) = y_0, c(1) = y_1$, and define $F: X \times I \to Y \times Y$ by $f \times c$. Examine ∂F .] - 17. Derive the Nonretraction Theorem of Section 2 from the Boundary Theorem. - 18. Suppose that Z is a compact submanifold of Y with dim $Z = \frac{1}{2} \dim Y$. Prove that if Z is globally definable by independent functions, then $I_2(Z, Z) = 0$. [Hint: By Exercise 20, Section 3, $N(Z; Y) = Z \times \mathbb{R}^k$. Certainly $I_2(Z, Z) = 0$ in $Z \times \mathbb{R}^k$, since $Z \times \{a\} \cap Z$ is empty. Now use the Tubular Neighborhood Theorem, Exercise 16, Section 3.] - 19. Show that the central circle X in the open Möbius band has mod 2 intersection number $I_2(X, X) = 1$. [HINT: Show that when the ends of the strip in Figure 2-18 are glued together with a twist, X' becomes a manifold that is a deformation of X.] Figure 2-18 Corollary to Exercises 19 and 20. The central circle in the Möbius band is not definable by an independent function. ## §5 Winding Numbers and the Jordan-Brouwer Separation Theorem The Classical Jordan Curve Theorem says that every simple closed curve in \mathbb{R}^2 divides the plane into two pieces, the "inside" and "outside" of the curve. Lest the theorem appear too obvious, try your intuition on the example shown in Figure 2-19. This section is a self-guided expedition with gun and camera into the wilds of such jungles, and in n dimensions, too! Begin with a compact, con- Figure 2-19 nected manifold x and a smooth map $f: X \to \mathbb{R}^n$. Suppose that dim X = n - 1, so that, in particular, f might be the inclusion map of a hypersurface into \mathbb{R}^n . (In general, a hypersurface in a manifold is a submanifold of codimension one.) We wish to study how f wraps X around in \mathbb{R}^n , so take any point z of \mathbb{R}^n not lying in the image f(X). To see how f(x) winds around z, we inquire how often the unit vector $$u(x) = \frac{f(x) - z}{|f(x) - z|},$$ which indicates the direction from z to f(x), points in a given direction. From Intersection Theory, we know that $u: X \to S^{n-1}$ hits almost every direction vector the same number of times mod 2, namely, $\deg_2(u)$ times. So seize this invariant and define the *mod 2 winding number* of f around z to be $W_2(f, z) = \deg_2(u)$. (See Figure 2-20.) In a moment you will use this notion (i.e., mod 2 winding number) to establish a generalized version of the Jordan curve theorem, but first some exercises will develop a preliminary theorem. The proof introduces a beauti- Figure 2-20 fully simple technique that appears repeatedly in later sections. Hints are provided at the end of the section, but it should be fun to fit the proof together yourself. **Theorem.** Suppose that X is the boundary of D, a compact manifold with boundary, and let $F: D \to \mathbb{R}^n$ be a smooth map extending f; that is, $\partial F = f$. Suppose that z is a regular value of F that does not belong to the image of f. Then $F^{-1}(z)$ is a finite set, and $W_2(f, z) = \#F^{-1}(z) \mod 2$. That is, f winds X around z as often as F hits z, mod z. (See Figure 2-21.) Figure 2-21 Here are some exercises to help you construct a proof: - 1. Show that if F does not hit z, then $W_2(f, z) = 0$. - 2. Suppose that $F^{-1}(z) = \{y_1, \ldots, y_l\}$, and around each point y_i let B_l be a ball, (That is, B_l is the image of a ball in \mathbb{R}^n via some local parametrization of D.) Demand that the balls be disjoint from one another and from $X = \partial D$. Let $f_l: \partial B_l \to \mathbb{R}^n$ be the restriction of F, and prove that $$W_2(f, z) = W_2(f_1, z) + \cdots + W_2(f_i, z) \mod 2.$$ (See Figure 2-22.) Figure 2-22 3. Use the regularity of z to choose the balls B_i so that $W_2(f_i, z) = 1$, and thus prove the theorem. Now assume that X actually is a compact, connected hypersurface in \mathbb{R}^n . If X really does separate \mathbb{R}^n into an inside and an outside, then it should be the boundary of a compact *n*-dimensional manifold with boundary—namely, its inside. In this case, the preceding theorem tells us that if $z \in \mathbb{R}^n$ is any point not on X, then $W_2(X, z)$ must be 1 or 0, depending on whether z lies inside or outside of X. [Here $W_2(X, z)$ is used for the winding number of the inclusion map of X around z.] The next exercises help you reverse this reasoning to prove the Separation Theorem. 4. Let $z \in \mathbb{R}^n - X$. Prove that if x is any point of X and U any neighborhood of x in \mathbb{R}^n , then there exists a point of U that may be joined to z by a curve not intersecting X (Figure 2-23). Figure 2-23 - 5. Show that $\mathbb{R}^n X$ has, at most, two connected components. - 6. Show that if z_0 and z_1 belong to the same connected component of $\mathbb{R}^n X$, then $W_2(X, z_0) = W_2(X, z_1)$. - 7. Given a point $z \in \mathbb{R}^n X$ and a direction vector $\vec{v} \in S^{n-1}$, consider the ray r emanating from z in the direction of \vec{v} , $$r = \{z + t\vec{v} : t \ge 0\}.$$ Check that the ray r is transversal to X if and only if \vec{v} is a regular value of the direction map $u: X \longrightarrow S^{n-1}$. In particular, almost every ray from z intersects X transversally. - 8. Suppose that r is a ray emanating from z_0 that intersects X transversally in a nonempty (necessarily finite) set. Suppose that z_1 is any other point on r (but not on X), and let l be the number of times r intersects X between z_0 and z_1 . Verify that $W_2(X, z_0) = W_2(X, z_1) + l \mod 2$. (See Figure 2-24.) - 9. Conclude that $\mathbb{R}^n X$ has precisely two components, $$D_0 = \{z : W_2(X, z) = 0\}$$ and $D_1 = \{z : W_2(X, z) = 1\}.$ Figure 2-24 - 10. Show that if z is very large, then $W_2(X, z) = 0$. - 11. Combine these observations to prove The Jordan-Brouwer Separation Theorem. The complement of the compact, connected hypersurface X in \mathbb{R}^n consists of two connected open sets, the "outside" D_0 and the "inside" D_1 . Moreover, \bar{D}_1 is a compact manifold with boundary $\partial \bar{D}_1 = X$. Note that we have actually derived a simple procedure for determining whether a given point z lies inside or outside of X. 12. Given $z \in \mathbb{R}^n - X$, let r be any ray emanating from z that is transversal to X. Show that z is inside X if and only if r intersects X in an odd number of points (Figure 2-25). Hints (listed by exercise number) - 1. If u extends to D, then $\deg_2(u) = 0$. - 2. Use 1, replacing D by $$D' = D - \bigcup_{i=1}^{l} \operatorname{Int}(B_i).$$ - 3. If f_i carries ∂B_i diffeomorphically onto a small sphere centered at z, then $u_i: \partial B_i \longrightarrow S^{n-1}$ is bijective. But f is a local diffeomorphism at y_i , so you can choose such B_i . - 4. Show that the points $x \in X$ for which the statement is true constitute a nonempty, open, and closed set. (Closed: easy. Open: use Figure 2-25 coordinates making X look locally like a piece of \mathbb{R}^{n-1} in \mathbb{R}^n . Non-empty: consider the straight line joining z to the closest point in X.) - 5. Let B be a small ball such that B X has two components, and fix points z_0 and z_1 in opposite components. Every point of $\mathbb{R}^n X$ may be joined to either z_0 or z_1 by a curve not intersecting X. (We have not yet excluded the possibility that z_0 and z_1 may be so joined!) - 6. If z_i is a curve in $\mathbb{R}^n X$, then the homotopy $$u_t(x) = \frac{x - z_t}{|x - z_t|}$$ is defined for all t. Thus u_0 and u_1 have the same mod 2 degree. - 7. Either compute directly or use Exercise 7, Chapter 1, Section 5. Note that if $g: \mathbb{R}^n \{z\} \longrightarrow S^{n-1}$ is g(y) = y z/|y z|, then $u: X \longrightarrow S^{n-1}$ is g composed with the inclusion map of X. So by the exercise cited, $u \cap \{\vec{v}\}$ if and only if $X \cap \{\vec{v}\}$. - 8. By Exercise 7, \vec{v} is a regular value for both u_0 and u_1 . But $$\#u_0^{-1}(\vec{v}) = \#u_1^{-1}(\vec{v}) + l.$$ - 9. Exercise 8 implies that both D_0 and D_1 are nonempty. Now apply Exercises 5 and 6. - 10. Since X is compact, when |z| is large the image u(X) on S^{n-1} lies in a small neighborhood of z/|z|. - 11. By Exercise 10, D_1 is compact, and $\bar{D}_1 = D_1 \cup X$. Produce a local parametrization of \bar{D}_1 around a point $x \in X$ as follows: Let $\psi: B \to \mathbb{R}^n$ map a ball B around 0 in \mathbb{R}^n diffeomorphically onto a neighborhood of x in \mathbb{R}^n , carrying $B \cap \mathbb{R}^{n-1}$ onto $X \cap \psi(B)$. Use Exercises 4 and 6 to prove either that $\psi(B \cap H^n) \subset D_1$ and $\psi(B \cap H^n) \subset D_0$ or the reverse. In either case, ψ restricts to a local parameterization of \bar{D}_1 around x. - 12. Combine Exercise 8 with Exercise 10. ## §6 The Borsuk-Ulam Theorem We shall use our winding number apparatus to prove another famous theorem from topology, the Borsuk-Ulam theorem. One form of it is **Borsuk-Ulam Theorem.** Let $f: S^k \to \mathbb{R}^{k+1}$ be a smooth map whose image does not contain the origin, and suppose that f satisfies the symmetry condition $$f(-x) = -f(x)$$ for all $x \in S^k$, Then $W_2(f, 0) = 1$. Informally, any map that is symmetric around the origin must wind around it an odd number of times. *Proof.* Proceed by induction on k. For k = 1, see Exercise 2. Now assume the theorem true for k-1, and let $f: S^k \to R^{k+1} - \{0\}$ be symmetric. Consider S^{k-1} to be the equator of S^k , embedded by $(x_1, \ldots, x_k) \to (x_1, \ldots, x_k, 0)$. The idea of the proof is rather like Exercise 12 in the previous section. We will compute $W_2(f, 0)$ by counting how often f intersects a line f in Denote the restriction of f to the equator S^{k-1} by g. In choosing a suitable line l, use Sard to select a unit vector a that is a regular value for both maps $$\frac{g}{|g|}: S^{k-1} \longrightarrow S^k$$ and $\frac{f}{|f|}: S^k \longrightarrow S^k$. From symmetry, it is clear that $-\vec{a}$ is also a regular value for both maps. By dimensional comparison, regularity for g/|g| simply means that g/|g| never hits \vec{a} or $-\vec{a}$; consequently, g never intersects the line $l = \mathbf{R} \cdot \vec{a}$. We let you check that regularity for f/|f| is equivalent to the condition $f \neq l$. (See Exercise 7, Chapter 1, Section 5.)